3.526 \(\int \frac{A+B \cos (c+d x)}{\sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=181 \[ \frac{(2 A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}-\frac{\sqrt{2} (A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{B \sin (c+d x)}{d \sqrt{\sec (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

[Out]

((2*A - B)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqr
t[a]*d) - (Sqrt[2]*(A - B)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])
]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + (B*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]*Sqrt[Sec[c
 + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.512543, antiderivative size = 181, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {2961, 2983, 2982, 2782, 205, 2774, 216} \[ \frac{(2 A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}-\frac{\sqrt{2} (A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{B \sin (c+d x)}{d \sqrt{\sec (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/(Sqrt[a + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]),x]

[Out]

((2*A - B)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqr
t[a]*d) - (Sqrt[2]*(A - B)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])
]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + (B*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]*Sqrt[Sec[c
 + d*x]])

Rule 2961

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[((a + b*Sin[e + f*x])^m*(
c + d*Sin[e + f*x])^n)/(g*Sin[e + f*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 2983

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(B*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(f*(
m + n + 1)), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*b*c*(
m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && (I
ntegerQ[n] || EqQ[m + 1/2, 0])

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)}{\sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\cos (c+d x)} (A+B \cos (c+d x))}{\sqrt{a+a \cos (c+d x)}} \, dx\\ &=\frac{B \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{a B}{2}+\frac{1}{2} a (2 A-B) \cos (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{a}\\ &=\frac{B \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}}-\left ((A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx+\frac{\left ((2 A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx}{2 a}\\ &=\frac{B \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}}+\frac{\left (2 a (A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{d}-\frac{\left ((2 A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a d}\\ &=\frac{(2 A-B) \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{\sqrt{a} d}-\frac{\sqrt{2} (A-B) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{\sqrt{a} d}+\frac{B \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 1.36029, size = 467, normalized size = 2.58 \[ \frac{i e^{-2 i (c+d x)} \left (1+e^{i (c+d x)}\right ) \sqrt{\sec (c+d x)} \left (-(2 A-B) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \sinh ^{-1}\left (e^{i (c+d x)}\right )+2 \sqrt{2} A e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{-1+e^{i (c+d x)}}{\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}}\right )+2 A e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\sqrt{1+e^{2 i (c+d x)}}\right )+B \left (-e^{i (c+d x)}\right )+B e^{2 i (c+d x)}-B e^{3 i (c+d x)}+\sqrt{2} B e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{1-e^{i (c+d x)}}{\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}}\right )-\sqrt{2} B e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{-1+e^{i (c+d x)}}{\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}}\right )-B e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\sqrt{1+e^{2 i (c+d x)}}\right )+B\right )}{4 d \sqrt{a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/(Sqrt[a + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]),x]

[Out]

((I/4)*(1 + E^(I*(c + d*x)))*(B - B*E^(I*(c + d*x)) + B*E^((2*I)*(c + d*x)) - B*E^((3*I)*(c + d*x)) - (2*A - B
)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcSinh[E^(I*(c + d*x))] + Sqrt[2]*B*E^(I*(c + d*x))*Sqrt[1 +
E^((2*I)*(c + d*x))]*ArcTanh[(1 - E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] + 2*Sqrt[2]*A*E^(I
*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[(-1 + E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))
])] - Sqrt[2]*B*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[(-1 + E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 +
 E^((2*I)*(c + d*x))])] + 2*A*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x
))]] - B*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]])*Sqrt[Sec[c + d*
x]])/(d*E^((2*I)*(c + d*x))*Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 0.727, size = 232, normalized size = 1.3 \begin{align*}{\frac{\sqrt{2}\cos \left ( dx+c \right ) \left ( -1+\cos \left ( dx+c \right ) \right ) ^{2}}{2\,da \left ( \sin \left ( dx+c \right ) \right ) ^{4}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( B\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\sin \left ( dx+c \right ) +2\,A\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \sqrt{2}-B\sqrt{2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) +2\,A\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) -2\,B\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \right ){\frac{1}{\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}}} \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/sec(d*x+c)^(1/2)/(a+cos(d*x+c)*a)^(1/2),x)

[Out]

1/2/d*2^(1/2)/a*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*(-1+cos(d*x+c))^2*(B*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*sin(d*x+c)+2*A*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*2^(1/2)-B*2^(1/2)*arctan(s
in(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))+2*A*arcsin((-1+cos(d*x+c))/sin(d*x+c))-2*B*arcsin((-1+
cos(d*x+c))/sin(d*x+c)))/(1/cos(d*x+c))^(1/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)/sin(d*x+c)^4

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 13.4661, size = 466, normalized size = 2.57 \begin{align*} \frac{\sqrt{a \cos \left (d x + c\right ) + a} B \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) -{\left ({\left (2 \, A - B\right )} \cos \left (d x + c\right ) + 2 \, A - B\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) + \frac{\sqrt{2}{\left ({\left (A - B\right )} a \cos \left (d x + c\right ) +{\left (A - B\right )} a\right )} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right )}{\sqrt{a}}}{a d \cos \left (d x + c\right ) + a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

(sqrt(a*cos(d*x + c) + a)*B*sqrt(cos(d*x + c))*sin(d*x + c) - ((2*A - B)*cos(d*x + c) + 2*A - B)*sqrt(a)*arcta
n(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) + sqrt(2)*((A - B)*a*cos(d*x + c) + (A -
 B)*a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(a*d*cos(d*
x + c) + a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B \cos{\left (c + d x \right )}}{\sqrt{a \left (\cos{\left (c + d x \right )} + 1\right )} \sqrt{\sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))/(sqrt(a*(cos(c + d*x) + 1))*sqrt(sec(c + d*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \cos \left (d x + c\right ) + A}{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/(sqrt(a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)